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Irregular frequencies and the motion of floating bodies 

By F.URSELL 
Department of Mathematics, University of Manchester, Manchester M13 9PL 

(Received 20 May 1980) 

A floating horizontal cylinder of infinite length is performing simple harmonic 
oscillations of small amplitude in the free surface of a uniform inviscid fluid under 
gravity. The cylinder intersects the mean free surface at  right angles, and the fluid is 
bounded below by a fixed horizontal plane. Let the corresponding two-dimensional 
velocity potential be expressed as a distribution of simple wave sources over the 
boundary of the body. Then it is known that the source density satisfies a Fredholm 
integral equation of the second kind which has a unique solution except a t  those 
frequencies (the irregular frequencies) a t  which the Fredholm determinant vanishes. 
The present work is concerned with the irregular frequencies. Let the simple wave 
sources be replaced by a fundamental solution which consists of a simple wave source 
together with additional wave singularities inside the cylinder. It is shown 
how irregular frequencies can be eliminated by an appropriate choice of these 
singularities. 

1. Introduction 
Consider a floating horizontal cylinder of infinite length which is performing simple- 

harmonic small oscillations in the free surface of a uniform inviscid fluid under gravity. 
It will be assumed throughout the present work that the cylinder intersects the free 
surface a t  right angles, and that the fluid is bounded below by a fixed horizontal plane. 
The mathematical theory of this two-dimensional wave motion leads to a linearized 
potential problem which was treated in a classical paper by F. John (1950). 

Two questions need to  be discussed. First there is the question of uniqueness: John 
showed that there is a t  most one solution unless a t  the given frequency there are 
exterior eigensolutions (bound states or trapping modes). He also showed that there 
are no bound states for bodies satisfying a certain geometrical condition. It is widely 
believed that bound states never occur and that John’s geometrical condition is not 
necessary, but this has not yet been shown. I n  the present work it will always be 
assumed that there are no bound states at  the frequency of oscillation. 

Secondly there is the question of existence. John represented the potential by a 
distribution of simple wave sources over the body. The source density was found to 
satisfy a Fredholm integral equation of the second kind which has a unique solution 
except possibly at  the discrete set of frequencies (the irregular frequencies) a t  which 
the Fredholm determinant vanishes. A separate and rather complicated argument was 
required for the irregular frequencies; the boundary-value problem was again found 
to have a unique solution which cannot however be represented as a distribution of 
simple sources. There is an infinite discrete set of irregular frequencies, corresponding 
to the eigenfrequencies of an interior problem. 
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Irregular frequencies give rise to computational as well as theoretical difficulties and 
have accordingly been much studied, particularly in acoustics where bound states are 
known not to exist. (For references see, for example, Jones 1974.) Irregular frequencies 
have no physical meaning but are associated with a given representation; when the 
simple wave source in John’s representation is replaced by a different fundamental 
solution the irregular values are in general modified and possibly removed altogether. 
Some earlier work on the short-wave asymptotics of a half-immersed circle illustrates 
this property (Ursell 1953, 196 1). Additional multipole singularities were placed a t  
the centre in order to make the kernel of the resulting integral equation small. This 
construction thus incidentally removed all the high irregular frequencies. More recently 
the lower irregular frequencies have been studied, and it has been shown (see 9 4 below) 
that some of these can be removed in some cqses by placing additional singularities 
inside the body. 

I n  the present work this method is studied more systematically. The simple wave 
source G,(P, Q), defined in (2.8) below, is replaced by a fundamental solution G,(P, &) 
which has additional multipole wave singularities inside the body. The argument is an 
adaptation of the work of Jones (1974) and Ursell (1978) for the exterior acoustic 
problem but is more complicated because the multipole singularities are more com- 
plicated for water waves than for sound waves. It will be seen, nevertheless, that the 
result takes a simple form. 

2. The boundary-value problem 
Let co-ordinates be taken with the origin 0 in the mean free surface of the fluid, with 

the x axis horizontal and normal to the generators of the cylinder, and with the y axis 
vertical (y increasing with depth). In  the (x, y) plane, let the fluid domain be denoted 
by D,  the boundary of the cylinder by aD, the mean free surface by F ,  the interior of 
the cylinder by D-. It is assumed that the origin lies in D-. Let points in D be denoted 
by capital letters P,  Q, points on aD by small letters p ,  q. Let y = h be the lower 
boundary of the fluid. 

Then the fluid motion is described by a velocity potential Re {$(x, y) e-iut). By 
hypothesis the curve aD intersects y = 0 a t  right angles, the Normal velocity V ( p )  is 
prescribed on aD, also the boundary conditions on aD and F are linearized. The time 
factor e-iut will always be omitted. Then the function $(x, y) satisfies the equation of 
continuity 

with the boundary conditions 

-- ”-  0 on y =  h, 
aY 

and a$ - = V ( p )  onaD, an (2.4) 
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where V ( p )  is a prescribed function of position, and a/an denotes differentiation along 
the normal from aD into D. At infinity there is the radiation condition that waves 
travel outwards to infinity. 

Let G(x,  y; f ; ,  y) = G(P,  Q )  denote a fundamental solution with a source singularity 
a t  (x, y) = ([, y), satisfying 

(2.6) 
aG KG+- = Oon F ,  
aY 

_ -  - 0  on y = h ,  
aY 

aG 

G(x, y; f ; , y )  - 4 log {(x - [)2 + (y - y)z} is bounded near ([, y), together with the radiation 
condition a t  infinity. The simplest fundamental solution is the simple wave source 
(Thorne 1953) 

cash k(h - y) cash k ( h  - y) cos k(x - 6) dk 
- 'fo cosh kh(k sinh kh - K cosh kh)  

O3 sinh ky sinh ky - 2 1 0  e-kh cos k ( x  - c )  dk ,  
k cosh kh 

where, in order to satisfy the radiation condition, the path of integration is made to 
pass below the pole k = k, of the integrand, a t  which 

K cosh k,  h = k ,  sinh k, h. 

It will be shown later, in appendix A, that near (x, y) = (0,O) there is an expansion 

+ c P,(x, Y) Y,(L 7;  h)  (2.10) 

where the functions a,( ), /I,( ), and the multipole potentials Om( ), YIn( ) are defined 
in appendix A. These functions satisfy the free-surface condition, and Orn( ) and 
YV,( ) also satisfy the bottom boundary condition and the radiation condition at  
infinity. A more general fundamental solution, symmetrical in (2, y) and (5, y), is 

m = O  

N 

0 
+ CI h , ~ ? A X ,  y; h)'F7IL(E, 7; h) ,  (2.11) 

where a, (m = 0,1,2. ..., M )  and h , ,  (m = 0,1,2,  . .., N )  are complex-valued constants, 
and Om( ) and IFm( ) are again the multipole potentials defined in appendix A. Thus 
C,( ) h a s  a singularity at the origin. 
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Let a solution $(P) of the boundary-value problem (2.1)-(2.4) be sought in the form 
of a distribution of sources GI( ) over aD: 

W )  = 1 A q )  Gl(P,  4 )  dsq, (2.12) 
aD 

where the source density p(q) is to be determined. (Note that John (1950) sought a 
solution in the form of a distribution of sources Go( ) over aD.) Then the boundary 
condition (2.4) is satisfied if,u(q) satisfies the Fredholm integral equation of the second 
kind 

(2.13) 

where alan, denotes normal differentiation for the variable P from aD into D. As is 
well known (see, for example, John 1950) the equation (2.13) has a unique solution 
except a t  those values of the wavenumber K (the irregular values) a t  which the 
Fredholm determinant vanishes. 

3. Irregular values 
Suppose now that K is an irregular wavenumber; i t  is still assumed (see 3 1 above) 

that a t  this wavenumber there are no bound st.ates. It follows from Fredholm’s theory 
that the homogeneous equation 

then has a non-trivial solution, also denoted by ,u(y). The following theorem is typical. 

THEOREM 1. In  the equation (2.11) defining C,(P, &), suppose that the imaginary parts 
of the coeficients a,, . . . , and b,, . . . , b, are all strictlg positive. Then every solution of the 
integral equation 

The proof proceeds along the same lines as in Jones (1974) and Ursell(l978) and will 

THEOREM 2. Suppose that the integral equation (3.1) has a non-trivial solution p(q). 

(3.5) 

be given later. We begin by proving a second theorem: 

Then the interior potential 

u(P-) = /aDa(d G,(P-, 4 )  ds,, 

defined for 4 ED-, vanishes on an. 
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Proof. Consider the exterior potential 

where P E  D. Evidentlyu(P) satisfies (2.1), (2.2),  (2.3) and the radiation condition, and 
on account of (3.1) it also satisfies aupn = 0 on D. Thus, by the assumed uniqueness 
property, u(P) = 0 in D, and in particular u ( p )  = 0 on aD. Consider now the interior 
potential u(P-), defined by (3.5).  This is not the analytic continuation of u(P), since 
there is a source distribution along the common boundary aD, but it is known that a 
potential is continuous across a source distribution. Thus u(p-) = ~ ( p )  = 0. This con- 
cludes the proof of theorem 2. 

It does not however follow that u(P-) defined by (3.5) is an eigenfunction of the 
interior problem since Gl(P-, q )  has singularities at the origin. I n  fact the expansion 
near the origin is given by a third theorem. 

THEOREM 3. Suppose that P- lies inside a semicircular arc C which is  small enough to 
lie inside D- and which has its centre at 0. Then 

u(PJ = C A , z m ( P )  + 2 B,&(P-) + 
m 01 17.I N 

0 0 0 0 
amAm@,(4;  h) + C b,B,Y,(P-; h),  (3.7) 

where 
P 

where a, and b, are the coeflcients in (2.1 I) ,  and where the wave potentials a,( ), /3,( ), 
a,( ), Y,( ) are dejined in appendix A .  

Proof of theorem 3. From (3.5) and (2.11) we have 

u(P-) = ~ ( 4 )  GO(P-9 q )  dsp + CamA, @,(P-) + Cb,B,y,(P-), 
I a D  

and, on substituting 

Go(P-, 4 )  = zarn(P-) @m(P) + ‘Pm(P-) Y,(P), 

(see appendix A), we have equation (3.7).  This concludes the proof of theorem 3. 
Following the argument of Ursell (1978), we now consider the integral 

au* 
an an [u, u*] = IC (u - - u* ”) ds, 

where the asterisk denotes the complex conjugate. From Green’s theorem, since u and 
u* are both harmonic and satisfy the free-surface condition (2.2), it follows that 

since u = U* = 0 on aD, by theorem 2. Now using theorem A 1 in appendix A and 
theorem B 3 in appendix B we find that 

2 . .  
0 = - Lu, u*l = , ,T(A., ,  qrt: (I,,,, h,,,),  (3.8) 477 
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where by definition 

7l 

4- 2ko h + sinh 2k, h 
1 Ma,A,kim 2 a. A ,  cosh k, h + 

coshk,hF (2m- I)! 1 
1 N b,B lc2m 

boBocoshk,h+- coshkoh Z L E  (2m)! ' (3.9) 
7lk; 

-k 2koh + sinh 2k0h 

We can now proceed to the 

Proof of theorem 1. Since I m  (a,) > 0 (m = 0,1, .  . ., M ) ,  and I m  (b,) > 0 (m = 0, 
1, ..., N ) ,  weseefrom(3.9) that%( ) > 0 except when A ,  = B, = 0 ;  but, from (3.8)) 
% = 0. Thus we must have A, = B, = 0. It then follows that 

and therefore p(q) satisfies the integral equation (3.2). This concludes the proof of 
theorem I. 

Note. The proof remains valid under wider conditions. It is sufficient that  the 
coefficients a, and bn, be chosen so that 2 ( ) is a positive definite Hermitian form in 
A, and Brit. Also, if a certain term, a, say, is absent in the sum (2.1 1)) the conclusion 
A, = 0 remains valid for m + E ,  although we can no longer conclude that A, = 0. 

Suppose, then, that  we have concluded that A,, = 0 (m = 0, ..., M ) ,  and B, = 0 
(m = 0, ..., N). It follows from (3.7) that, near 0, 

W m 
u(P-) = c A,a,(P)+ c B,P,(P-) (3.10) 

and has no singularity a t  0. Thus, since from theorem 2 we have u ( p J  = 0 ,  it follows 
that either u(PJ vanishes identically, or that  it is an eigenfunction of the interior 
problem with the boundary conditions 

(K+$) u(PJ = 0 on y = 0 and u(p-) = 0 on aD. 

The latter possibility can be excluded by choosing M and N large enough. For the 
expansion (3.10) implies that  at the origin 0 

lM+ 1 N f l  

and 

( t ) w u = ~ ,  m = 0 , 1 , 2  ,..., 2M+1, 

u=O, m = 0 , 1 , 2  ,..., 2N+2, 

but none of the eigenfunctions of (3.2) will satisfy all these conditions when M and N 
are chosen large enough. Let this be done, then we must have u ( e )  = 0.  Thus 

and from (3.1) we have 
n n 
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Thus p ( p )  = 0 on aD. Thus the value of K under consideration is not an irregular 
wavenumber when M and N are large enough. It should not be difficult to estimate 
appropriate bounds for M and N when K is prescribed (cf. Jones 1974, $ 3), but this 
problem will not be pursued here. 

4. Applications and discussion 
Sayer (1980) has made numerical calculations for some bodies symmetrical about 

x = 0. Using a symmetrical pair of source functions Go( ), he found the expected 
difficulties near the first irregular frequency, which is the eigenfrequency of the first 
symmetrical mode of the interior problem. These difficulties could be removed by 
using a symmetrical pair of fundamental solutions 

for suitable values of a,; the actual choice of a, was found to be not critical. It was 
found that the same construction also removed the second and third irregular 
frequency. (It will be recalled, see § 1 above, that  in earlier work on high-frequency 
asymptotics the choice of a, was critical.) More recently P. Martin (1980) has studied 
a symmetrical pair of fundamental solutions 

for a symmetrical body. This is simpler than (4.1) because (particularly for h = co) Ql 
has a simpler form than 0,. He found that the first irregular frequency was removed by 
an appropriate choice of a,, but that  numerical difficulties still occurred near the 
eigenfrequencies of higher symmetrical modes. Let us examine this phenomenon in the 
light of theorem 1.  According to our argument (see the note following the proof of 
theorem l),  a t  an irregular value associated wit’h (4.2) the corresponding interior 
eigenfunction must have the form 

u(P-) = -2Aoe-K~cosKx+A,ol,(x,y)+A3a3(x,y)+ ..., 
where the term involving a,(x, y) is absent. Thus 

u(P-) = - 2A,e-KvcosKx+O((Kr)4). 

It is unlikely that any interior eigenfunction has precisely this form but it is physically 
obvious (see, for example, Ursell 1974) that  the higher even eigenfunctions have nearly 
the form e-Kvcos Kx. Thus the Fredholm determinant, while not zero, would be 
expected to be small, and this would help to explain the computational difficulties. 

I n  practice it is the potential on the body rather than the source strength that is 
required. This is given by the integral equation 

which is obtained from Green’s theorem (cf. Ursell 1978, $ 3 ) .  The kernel of this 
equation is the transpose of our previous equation since G,(P, Q )  = G,(Q, P )  and thus 
has the same Fredholm determinant. Thus our theorems remain applicable to (4.3). 

We can now see how John’s treatment of the boundary-value problem can be 
simplified At an irregular frequency associated with G,(P, Q )  use the fundamental 
solution G,(P, Q )  with sufficiently Iargc values of J f  and  N .  (See t*he end of 3 above.) 
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Then this frequency is not an irregular frequency associated with G,(P, Q), and the 
ordinary theory remains applicable. 

Appendix A. Expansion of the source potential 

depth h is given by the potential 
The time factor e-iVt is omitted throughout. The wave source a t  (t, 7 )  in water of 

cash k(h - y) cash k(h - 7 )  cos k(x - [) dk 

- 2 f o  cosh kh(k sinh kh - Kcosh kh,) 

* sinh ky sinh ky 
- 2 j 0  e-kh cos k(x - 6) dk, k cosh kh 

see Thorne (1953). We need the expansion of Go near (x, y) = (0 ,O);  this will be given in 
theorem A 1 below and involves the following singular potentials (see Yu & Ursell 
1961; Ursell 1976): 

(1) Wave source a t  (0 ,O):  

( 2 )  Horizontal wave dipole a t  (0 ,O):  

a 
Y ;  h) = - - a0, where Q0 is given by (A 2). ax 

(3) Symmetrical potentials singular a t  (0,O): 

cos2mB K cos (2m- l )B  
(Dm(x, y; h) = - +- 

rZm 2m- 1 r2m-l 

*e-kh(K+f) (Ksinhky- kcoshky)k2m-2C~~kXdk 
k sinh kh - K cosh kh 

- 

(m = 1,2 ,3 ,  ...). (A4) 
(4) Anti-symmetrical potentials singular a t  (0 ,O):  

i a  
Ym(x, y; h) = --- a m  2m ax 

sin (2m+ 1 )  B K sin2mB 
2m rZm 

- - 
+m+l +-- 

1 ---P Pm) !  0 

e-kll(K + k) ( K  sinh ky - k cosh ky) k2m-l sin kx dk 
k sinh kh - K cosh kh 

( ~ 2 ,  = 1 , 2 , 3 ,  ...). (A5) 
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A s x +  +co,wehave 

2ni cosh k, h 
2k, h + sinh 2k,h 

cosh k,(h - y) eikox, 

2nk, cosh k, h 
cosh k,(h - y) eiko x, 

yo - 2k,h+sinh2k0h 

' m  

Ym"- coshk,(h-y)efkox (m = 1,2,3, ...). 

2ni k p  
cosh k,(h - y) eikoz 

(2m - l)! cosh k0h(2k, h i- sinh 2k, h) 

277 k p + l  

(am)! cosh k,h(2k0h+sinh 2k,h) 

( m =  1,2 ,3  ,... ), 

When h = co we readily see tha t  

dk 
e-kYcos kx- 

k - K  

k2m--2(k+ K) e-kycoskxdk; 
(zrn-l)! ' J  - - 

s i n ( 2 m + l ) e  K sin2mB +-- (m = 1,2,3, ...) 
2m rZm Ym(X7Y; co) = r2m+l 

151 

We note tha t  (AB) and ( A 7 )  are wavefree potentials. We also define the regular 
harmonic wave potentials 

a,(x, y) = - 2 e-KY cos Kx, ,!?,(x, y) = - 2 e-Kv'K-1 sin Kx, 

We can now state two theorems on the expansion of the  wave source Go( ). 

THEOREM A 1. When Ix+iyI < I < +  iql, the source potential G,(x, y; 5 , ~ ;  h) defined by 
(A 1) caqa be expanded in the form 

m 00 

G,(x,?/: 5 , r ;  1') = c %,(T,?/)  @ / / 2 ( L q ;  I?)+ 2 ~ / , ~ ( ~ ~ ? ~ ) ' l ~ / l , ( ~ , q :  10. 
,I1 = (1 /)I = I1 
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THEOREM A 2. (The special case h = co.) When Ix + iyl < lc+ i71, the source potential 
Go(x, y ;  5 , ~ ;  co) can be expanded in the form 

m W 

It will be convenient to begin by proving theorem A 2, and to assume initially that 
y < 7. We have 

whence 

(A 9) 
sinh k y  e-ky cos k x  - e-KY cas 

e--lig k-1 sin kx - e-KY K-1 sin Kx 
k - K 

= - 2JOm e-kq cos k6 ( cos kx  + 

sinh k y  
sin k x  + e-kv k sin k6 (7 

k - K  

) d k .  (A10) 
- 2 1 0 

Let us consider (A 9). It is known that 

thus 
e-ku cos kx  - e-Ku cos Kx 

k - K  
cos kx + 

y2s+l ( - r ) S k S - K S  
=c;zs-  cos(2s+ l)L9+~----- cos so 

(2s+ l)! S! k - K  

cos 2se - (Kr)2s+1 cos (2s + 1) o + . . .) 
(2s + l)! 

1 k 2 s - 2 ( k + K )  
as(x, Y 1 - -- - c  2,=, (2S- l ) !  

On substituting this expression for (A 11) in the integral (A 9) and using (A 6 )  it is seen 
that (A 9) is equal to C,"aS(x, y )  QS([, 7; co), and similarly it can be shown that (A 10) 
is equal to Z?P,(x, y) 'P,$(<, 71; co). This proves the validity of (A 8) when y < q ,  but it is 
readily seen that both sides of (A 8) are regular harmonic when ( x  + i y (  < 16 + iq I. Thus, 
by analytic continuation the result (A 8) is valid for all (x, y )  and ( 5 , ~ )  such that 
1.2: + iyJ  < 15 + irl. This concludes the proof of theorem A 2. 
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Proof of theorem A 1.  I n  this section take C to be a semicircular arc with centre (0, 0 ) ,  
lying inside the strip - co < x < co, 0 < y < h. Denote by A- the semicircular domain 
bounded by C and the x axis, and denote by A the part of the strip exterior to C .  T3ke 
the point (X, Y )  in A_, and the point ([,'I) in A .  I n  the domain A- apply Green's 
theorem to the functions Go(x,y;  [ , ~ ; h )  and Go(x,y; X ,  Y ;  00). In  A- the former 
function is regular, the latter has a source singularity. Thus 

2nG,(X, y ;  &'I; h)  
a a =I( Go@, y; 5 , ~ ;  h ) n G o ( x ,  y; X ,  R a) -Go@, y; X ,  Y; a) -GO(x, an y; C,v; h)) W x ,  y), 

where the integration is along the boundary of A_. The functions Go( ) both satisfy the 
free-surface condition on the upper horizontal boundary of A_. Thus the integrand 
vanishes there, and we see that 

2nG,(X, y ;  t, 'I; h) 
a a 

= j (Go(x, y; 5, 'I; wn Go@, y; x, Y ;  a) -G&, y; x, y ;  00) 7& Go@, y; & 7; h))  ds 
C 

(A 12) 

= [Go( ...; 5,q; h) ,  Go( ...; X ,  Y ;  co)] in the notation of appendix B below 
m 
I 

=C%(X,  Y)[G,(...; 5,r; ~Pm(.**;  mfl (A 13) 

(A 14) 

0 

m 

+ & ( X ,  I-) [Go( ... ; [,'I; h) ,  Ym(.. . ; co)] by theorem A 2. 
0 

To evaluate the bilinear products in (A 13) and (A 14), observe that 

Om( ...; co)-Q,( ...; h)  

[Go(...; 5,r;  h),@J...; 0011 = [Go(...; [,'I; h),Qm(...; 41. 
is a regular wave function in A_,  whence by Green's theorem 

(A 15) 

The last expression can be evaluated by applying Green's theorem in the domain A 
to the functions Qm(x, y;  h)  and G,(x, y; 5 , ~ ;  h). In  A the former function is regular; the 
latter has a source singularity, There is no contribution to the line integral from the 
upper and lower horizontal boundaries of A,  where the integrand vanishes, or from co, 
where Q, and Go represent outgoing waves. 

Thus, by Green's theorem, 

[Go(.*.; [,'I; h),  @',(...; h)l = 2n@,(5,7; h ) ,  

[Go(...; 5 , ~ ;  h),y,(...; h)l = Zn'T,(E,y; h). 
and similarly 

Thus, from (A 13) and (A 14), 
m 00 

2nGo(X, Y ;  5 , ~ ;  h)  = 277 C anL(X,  J') Qm(5, 'I; h)  + 2n C P,(X, Y )  y,,(5, 'I; h).  

This concludes the proof of theorem A 1.  From the proof the result is seen to be valid 
when IX+iYI < l[+iq/. It is not necessary for the semicircle C to lie in the strip 
where O < y < h ,  but we shall not' need this property. 

0 0 
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Appendix B. Bilinear products 
Suppose that the functions f (x, y) and P(x,  y) satisfy 

in the strip - co < x < 00, 0 < y < h, that they are bounded except possibly a t  (0, 0), 
and that they satisfy the boundary conditions 

Kf+-  af = 0, KF+-  aF = 0 on y = 0, 

a Y  aY 
where K > 0 is real. Let the semicircle C, the inner domain A- and the outer domain A 
be defined as in appendix A. Then, by definition, the bilinear product is 

where denotes differentiation along the normal from C into A. It is readily seen 
that the value of [ f ,  F] is unaltered when the path of integration is replaced by any 
other path lying in the strip and extending from the positive x axis to the negative 
x axis. This follows from Green's theorem since f and F are regular harmonic between 
the paths, and since f aF/i3y - F af/ay = 0 on y = 0, from (B 2) .  

The calculation of [u, u*] in $ 3  above involves the values of [ f ,  F"], where the 
asterisk denotes the complex conjugate, and where f and F may be any of the functions 
a,(x, y), &(x, y), Owb(x, y),  Ym(x, y). We begin, however, by considering the values of 
[% @,I and [Pb Y m l .  

THEOREM B 1. We have 

la,, @z1 = [Pl,'y;I = 2n, 

[az, @,I = [Pl, Ym1 = 0, when, 2 =k m, 

[El ,  Y m I  = [A, @,I = 0. 

Proof of theorem B 1. Apply Green's theorem in A- to the functions a,(x, y) and 
G,(x, y;  X,Y;  h), where (X, Y )  lies in A_.  In  A- the former function is regular, the 
latter has a source singularity. We thus find that 

27~0l,(X, Y )  = [a,(...), Go( . .  .; X ,  Y ;  h)]  

= [al( ...), Xa,(X, Y)@,( ...; h)+X/3,(X,Y)Ym(. . . ; ) ]  from theorem A 1 

= Za,(X, Y )  [a,, @,I + CP,(X, Y )  [a,, Y?nl. (B 4) 

It is evident, however, that near ( X ,  Y )  = (0,O) any regular wave function has a 
unique expansion in terms of the sets of regular wave potentials a,(X, Y )  andP,(X, Y ) .  
Thus, in particular, from (B 4) 

[q, @,I = 27r; [a,, @,I = 0, 1 =k m; 

and [a,,YmI = 0. 

Similarly [P,, Y.il = 2n; rI4, Y m l  = 0, 1 * m; 

and [Pz, @,I = 0. 

This concludes the proof of theorem B 1. 
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The values of [al, @;I and [Om, ag] are readily deduced from (B 5) by noting that 
a1 is real, and that [F, f *I = - [f*, F] = - [ f, P*]*. Similarly all the bilinear products 
relat,ed to (B 6), (B 7) and (B 8) can be evaluated. To evaluate [al, a%], contract the 
contour of integration to the origin; it follows that [al, a;] = 0. Similarly 

[.l,P?3 = [P,,PZl = 0. 

It only remains to evaluate [Dl ,  @4] and similar terms. Consider 

[al( ... ; h),  @$( ...; h)]  

To evaluate this, consider 

along the boundary of the exterior domain A closed by vertical lines a t  x = & co. This 
integral vanishes since Ql and @% are regular in A .  Also the integrand vanishes on 
y = 0 and y = h. It follows tha t  

and the latter integrals can be found by using the appropriate asymptotic forms from 
appendix A and carrying out an elementary integration. The results are collected in the 
following theorem. 

THEOREM B 2. Consider the bilinear products [ f, P*] ,  where f and F may be any of the 
functions a?,,, P,,, ant, Ym. Then all these bilinear products vanish except the following: 

47r2i Gosh2 koh 
2koh+sinh2koh' C@O, @$I = - 

4n2ik21+2m 

(21 - 1) ! (2m - 1) ! cosh2ko h (2k0 h + sinh 2ko h) ' 121, m > 1 .  0 
[@.,,, @,*I = - 

47r2ikg cosh2 k, h 
2k0h + sinh 212,h' [YO,%l = - 

4n2ik21+2 

(21)! (2k, h + sinh 2k0h)' 12 1 ;  0 [Yo, Y?I = [Yl, YFl = - 
4,2ik21+2m+2 

l > l ,  m > l .  0 

[Ym'y'l = -(21)! (2m)! cosh2koh(2koh+sinh2k,h)' 

[at, @:I = - [ @ l ,  at"] = 2n; [Pl, Y?] = - [Yl, p 3  = 27r. 

These results are applied in theorem B 3.  

THEOREM B 3 .  Suppose that the wavepotential # (x ,  y ) ,  satisfying (2.1) and ( 2 . 2 ) ,  has a n  
expansion 
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inside a domain A- bounded by a semicircular arc C with its centre at (0,O). Then 

7T 

+ Zk,h + sinh 2k,h 

17.1 N 

0 0 
= C Im (GAT) + C Im (DIB:) 

1 M clk;l 2 

cosh k,h -1 Co cosh E ,  72 + 

where Ic,  is the positive root of k, tanh E ,  h = K .  

Proof. Using obvious symmetry properties we have 

[#, #*I = [CAjaj  + CCj Oj, CA$@ + CC:@?] + [CB,P, + CD,Yj, CB:P? + ED: Up?] 

(B 0) 

(B 10) 

= =AjA:[aj,.:] +CCA,C,'"[olj, @,t"] +CCC,A,t"[@,, a:] +CCcjc:[@j, @:I 
+similar terms from (A 10). 

On using t'he values of the bilinear products given in theorem B 2 the result follows 
immediat ely. 
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